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Nonnegative Matrix/Tensor Factorization

I We have developed a series of novel unsupervised Machine Learning (ML) methods

I Our unique ML methods are based in matrix/tensor factorization coupled with custom
k-means clustering and nonnegativity/sparsity constraints:
I NMFk: Nonnegative Matrix Factorization
I NTFk: Nonnegative Tensor Factorization

I NMFk / NTFk are capable to efficiently process large datasets (GB/TB’s)
utilizing GPU’s & TPU’s (TensorFlow, PyTorch, MXNet)

I NMFk / NTFk have been applied to analyze a series of real-world analyses
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Why Unsupervised Machine Learning (ML)?

I Supervised ML: requires prior categorization (knowledge) of the processed data
Example: Recognize images of cats and dogs after extensive training; but cannot
recognize horses if not trained
Cannot find something that we do not already know

I Unsupervised ML: extracts hidden features (signals) in the processed data without any
prior information (exploratory analysis for data-driven science)
Example: Identify features that distinguish images of animals (e.g., cats, dogs, horses,
etc.); without prior information or training
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Why not supervised Machine Learning (ML)

I Supervised ML
I can introduce subjectivity (through the labeling process)
I does not provide insights why horses are different than dogs / cats
I cannot make predictions
I requires huge training (labeled) datasets
I is impacted by “adversarial examples”

⇒ major limitations of the supervised methods
for data-analytics and data-driven science applications
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Why nonnegativity?

I NMF vs PCA (Lee &
Seung, 1999)

I NMF: Nonnegative
Matrix Factorization

I PCA: Principal
Component Analysis

Nonnegativity constraints provide meaningful and interpretable results (+sparsity)
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Why tensors?

I Tensors (multi-dimensional arrays / multi-modal data) are everywhere:
I color image is a 3-D tensor (RGB)

I color movie is a 4-D tensor (RGB + time)

I observable data are typically a 5-D tensor (x, y, z, t, scalars...)

I model outputs are typically a 5-D tensor (x, y, z, t, scalars...)

I n model parameters (e.g., conductivity, capacity, etc.) impacting model outputs
form a (n+ 5)-D tensor

I n parameters (e.g., pressure, temperature, pH, species concentrations, etc.)
impacting experiments (e.g. reaction rate) form a n-D tensor
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NMF: Nonnegative Matrix Factorization
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NTF: Nonnegative Tensor Factorization
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Why not use PCA/SVD?

I There is no direct equivalent of PCA/SVD for multi-dimensional arrays (tensors)
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Tucker Tensor Factorization (3D case): Tucker-3
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Tucker Tensor Decomposition: Feature extraction
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Tucker Tensor Decomposition: Feature extraction
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Tucker Tensor Decomposition: Feature extraction

I Tucker decomposition is achieved through minimization
I Nonnegativity and sparsity constraints help the feature extraction
I Optimal number of features [k,m, n] is estimated through k-means clustering of

a series minimization solutions with random initial guesses
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NMFk / NTFk Analyses

I Field Data:
I Groundwater contaminant migration
I US Climate

I Geothermal
I Seismic

I Lab Data:
I X-ray Spectroscopy
I UV Fluorescence Spectroscopy

I Microbial population analyses

I Operational Data:
I LANSCE: Los Alamos Neutron Accelerator
I Hydrocarbon (oil/gas) production

I Model Data:
I Reactive mixing A+B → C
I Phase separation of co-polymers
I Molecular Dynamics of proteins

I Lattice-Boltzmann simulations of
fluid displacement

I Europe Climate modeling
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NMFk / NTFk Publications

I Vesselinov, Munuduru, Karra, O’Maley, Alexandrov, Unsupervised Machine Learning
Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing, Journal of
Computational Physics, (in review), 2018.

I Vesselinov, O’Malley, Alexandrov, Nonnegative Tensor Factorization for Contaminant
Source Identification, Journal of Contaminant Hydrology, (accepted), 2018.

I Stanev, Vesselinov, Kusne, Antoszewski, Takeuchi, Alexandrov, Unsupervised Phase
Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with
Custom Clustering, Nature Computational Materials, 2018.

I O’Malley, Vesselinov, Alexandrov, Alexandrov, Nonnegative/binary matrix factorization
with a D-Wave quantum annealer, PLOS ONE, (accepted), 2018.

I Vesselinov, O’Malley, Alexandrov, Contaminant source identification using
semi-supervised machine learning, Journal of Contaminant Hydrology,
10.1016/j.jconhyd.2017.11.002, 2017.

I Alexandrov, Vesselinov, Blind source separation for groundwater level analysis based
on nonnegative matrix factorization, WRR, 10.1002/2013WR015037, 2014.
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Climate model of Europe

I CLM/ParFlow model developed by
Stefan Kollet, Carina Furusho, Klaus
Görgen et al. (Forschungszentrum
Jülich, Germany)
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Climate model of Europe: air temperature 1989-2017

I monthly fluctuations in the air
temperature from 1989 to 2017 [◦C]

I Tensor: (316× 316× 348)
(columns× rows×months)

I NTFk applied to extract dominant
hidden (latent) features based on spatial
footprints and temporal characteristics
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Climate model of Europe: 2003 air temperature reconstruction by 3 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 4 features

Original Reconstruction Error

Unsupervised ML Tucker Research Climate Europe Oklahoma Summary



Climate model of Europe: 2003 air temperature reconstruction by 5 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 6 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 7 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 8 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 9 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 10 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 15 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 20 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 25 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 30 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 35 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 40 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 45 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature reconstruction by 50 features

Original Reconstruction Error
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Climate model of Europe: air temperature reconstruction errors
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Climate model of Europe: air temperature features (8)
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Climate model of Europe: air temperature features (8) 1989-2017

Unsupervised ML Tucker Research Climate Europe Oklahoma Summary



Climate model of Europe: air temperature features (8) 2002-2003
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Climate model of Europe: air temperature reconstruction by 8 features

Original Reconstruction Error
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Climate model of Europe: air temperature reconstruction by 50 features

Original Reconstruction Error
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Climate model of Europe: 2003 air temperature

I daily fluctuations in the air temperature
[◦C]

I Tensor: (424× 412× 365)
(columns× rows× days)

I NTFk applied to extracts hidden features
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Climate model of Europe: 2003 temperature fluctuations represented by 3 features
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Climate model of Europe: 2003 temperature fluctuations represented by 3 features
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Climate model of Europe: 2003 water-table depth

I fluctuations in the water-table depth [m]

I Tensor: (424× 412× 365)
(columns× rows× days)

I NTFk extracts spatial and temporal
footprints of dominant features
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Climate model of Europe: 2003 water-table fluctuations represented by 3 features
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Climate model of Europe: 2003 water-table fluctuations represented by 3 features
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Climate model of Europe: analyze all model outputs (>40) simultaneously

I Find interconnections among model outputs
I Evaluate impacts of different model setups
I Find dominant processes impacting model predictions

(e.g., climate impacts on groundwater resources, impacts of subsurface processes on
atmospheric conditions)
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Oklahoma seismic events 1991-2018

I 32,251 seismic events from 1989 to
2017

I Tensor: total energy of events over a
discretized domain
(118× 97× 520)
(columns× rows× weeks)

I NTFk applied to extract dominant
hidden (latent) features based on spatial
footprints and temporal characteristics
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Oklahoma seismic events 1991-2018: reconstruction by 4 features (signals)
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Oklahoma seismic events 1991-2018: extracted signals vs. injected volumes
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Summary

I Developed novel unsupervised ML methods and
computational tools based on Nonnegative
Factorization (Matrices/Tensors)

I Our ML methods have been used to solve various
real-world problems

I Our goal is to further tests our algorithms on
diverse datasets

Model data

Sensor data Experimental data

Robust Unsupervised
Machine Learning
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Machine Learning (ML) Algorithms / Codes developed by our team

I NMFk + ShiftNMFk + GreenNMFk

I NTFk

I NBMF: Quantum machine learning using D-Wave quantum annealer

I MADS: Model-Analyses & Decision Support
http://mads.gitlab.io http://madsjulia.github.io/Mads.jl

I Feature extraction examples:
http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation

I Slide deck / publications: http://monty.gitlab.io
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NMFk / NTFk Challenges

I Identifying the number of unknown features:
I applying custom k-means clustering and sparsity constraints
I analyzing reconstruction quality (e.g., Frobenius norm) and cluster Silhouettes

I Solving a non-unique optimization problem:
I performing multistarts, regularization and nonnegativity constraints
I applying diverse optimization techniques (Multiplicative/Alternating Least

Squares algorithms, NLopt, Ipopt, Gurobi, MOSEK, GLPK, Clp, Cbc, ...)
I accounting for the physics

I Processing Big Data:
I GPU’s / TPU’s / Distributed computing
I Account for data sparsity and structure
I Nonnegative Tensor Trains

I Dealing with Noisy Data:
I Random noise impacts accuracy but its accountable
I Systematic noise is identified as separate signals (features)
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NMFk / NTFk Performance

4GB Tensor (1000× 1000× 1000)

Framework Execution time (seconds)
MATLAB 2634
NumPy 881
MXNet 644
PyTorch 121
TensorFlow 119
Julia 109
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NMFk / NTFk Scalability
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Tensor Size (bytes)
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3D Tensor
perfect scaling
256 CPUs
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Unsupervised Machine Learning Applications: Exploratory Analysis

I Data Analytics: Identify signals (features) in datasets (latent variables)
I Feature extraction (FE):
I Blind source separation (BSS)
I Detection of disruptions / anomalies
I Image recognition
I Discover unknown dependencies and phenomena
I Guide development of physics / reduced-order models representing the data

I Model Analytics/Diagnostics: Identify processes (features) in model outputs
I Identify dependencies between model inputs and outputs
I Discover unknown dependencies
I Separate processes (inseparable during modeling)
I Develop ML (reduced-order) models

I Coupled Data/Model Analytics:
Simultaneous analyses of data and model outputs (data/model fusion)

Unsupervised ML Tucker Research Climate Europe Oklahoma Summary


	Unsupervised ML
	Nonnegative Matrix/Tensor Factorization
	Why Unsupervised Machine Learning (ML)?
	Why not supervised Machine Learning (ML)?
	Why nonnegativity?
	Why tensors?
	NMF
	NTF
	Why not use PCA/SVD?

	Tucker
	Tucker123
	Tucker123
	Tucker123
	Tucker123

	Research
	NMFk / NTFk Analyses
	NMFk / NTFk Publications

	Climate Europe
	Climate model of Europe
	Climate model of Europe: air temperature 1989-2017
	Climate model of Europe: 2003 air temperature reconstruction
	Climate model of Europe: air temperature reconstruction error
	Climate model of Europe: air temperature reconstruction error
	Climate model of Europe: air temperature features (8)
	Climate model of Europe: air temperature reconstruction error
	Climate model of Europe: air temperature reconstruction
	Climate model of Europe: air temperature reconstruction
	Climate model of Europe: 2003 air temperature
	Air temperature fluctuations
	Air temperature fluctuations
	Water-table fluctuations
	Water-table fluctuations
	Water-table fluctuations
	Climate model of Europe: analyze all model outputs simultaneously

	Oklahoma
	Oklahoma seismic events 1991-2018
	Oklahoma seismic events 1991-2018: reconstruction by 4 features (signals)
	Oklahoma seismic events 1991-2018: extracted signals vs. injected volumes

	Summary
	Summary
	Our Codes
	NMFk / NTFk Challenges
	NMFk / NTFk Performance
	NMFk / NTFk Scalability
	Unsupervised Machine Learning Applications


	fd@rm@13: 
	fd@rm@12: 
	fd@rm@11: 
	fd@rm@10: 
	fd@rm@9: 
	fd@rm@8: 
	fd@rm@7: 
	fd@rm@6: 
	fd@rm@5: 
	fd@rm@4: 
	fd@rm@3: 
	fd@rm@2: 
	fd@rm@1: 
	fd@rm@0: 


