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Why unsupervised Machine Learning (ML)?

I Supervised ML: requires prior categorization (knowledge) of the processed data
Example: Recognize images of cats and dogs after extensive training; but cannot
recognize horses if not trained
Cannot find something that we do not already know

I Unsupervised ML: extracts hidden features (signals) in the processed data without any
prior information (exploratory analysis for data-driven science)
Example: Identify features that distinguish images of animals (e.g., cats, dogs, horses,
etc.); without prior information or training
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Why not supervised Machine Learning (ML)

I Supervised ML
I can introduce subjectivity (through the labeling process)
I does not provide insights why horses are different than dogs / cats
I cannot make predictions
I requires huge training (labeled) datasets
I is impacted by “adversarial examples”

⇒ major limitations of the supervised methods
for data-analytics and data-driven science applications
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Supervised Machine Learning (xkcd)
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Why nonnegativity?

Nonnegativity constraints provide meaningful and interpretable results (+sparsity)
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Unsupervised Machine Learning Applications: Exploratory Analysis

I Data Analytics: Identify signals (features) in datasets (latent variables)
I Feature extraction (FE):
I Blind source separation (BSS)
I Detection of disruptions / anomalies
I Image recognition
I Discover unknown dependencies and phenomena
I Guide development of physics / reduced-order models representing the data

I Model Analytics/Diagnostics: Identify processes (features) in model outputs
I Separate processes (inseparable during modeling)
I Model reduction (development of reduced-order models)
I Identify dependencies between model inputs and outputs
I Discover unknown dependencies and phenomena (deterministic/stochastic modeling)

I Coupled Data/Model Analytics:
Simultaneous analyses of data and model outputs (data/model fusion)
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Nonnegative Matrix/Tensor Factorization

I We have developed a series of novel unsupervised Machine Learning (ML) methods and
computational techniques

I Our methods are based in matrix/tensor factorization coupled with custom k-means
clustering and nonnegativity/sparsity constraints:
I NMFk: Nonnegative Matrix Factorization

I NTFk: Nonnegative Tensor Factorization

I NMFk/NTFk are capable to efficently process large datasets (GB/TB’s) utilizing GPU’s &
TPU’s (TensorFlow, PyTorch, MXNet)
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Tucker tensor factorizations (3D case): Tucker-3

≈

X
[K,M,N ]

G
[k,m, n]

H
[k,K]

W
[n,N ]

V
[m,M ]

X ≈ G⊗H ⊗W ⊗ V
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Tucker tensor factorizations (3D case): Tucker-2 (three possible alternatives)

≈
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Tucker tensor factorizations (3D case): Tucker-1 (three possible alternatives)

≈
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Tucker Tensor Decomposition: Example
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Tucker Tensor Decomposition: Example
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Tucker Tensor Decomposition: Example

V =

tt2
tanh(t− 10) + 1



W =


x

x3

ex

sin(x) + 1



H =


y

y4

ln(y)
sin(2y) + 1
cos(y) + 1



(12 elements)

X = G⊗H ⊗W ⊗ V
= xyt+ xy4t+ xtln(y)+

xt(sin(2y) + 1) + x3yt+

xt(cos(y) + 1) + ytex+

yt(sin(x) + 1)+

xyt2 + xy(1 + tanh(t− 10))+

t2ex(sin(2y) + 1)+

(1 + tanh(t− 10))(sin(x) + 1)

(cos(y) + 1)
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Tucker Tensor Decomposition: Example
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Tucker Tensor Decomposition: Example

← Truth vs Predictions→
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Tucker Tensor Decomposition: Example
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Tucker Tensor Decomposition: Example

M = G⊗H ⊗W

M1 = xy + xy4 + xlog(y + 1)+

x(sin(2y) + 1) + yex

x(cos(y) + 1) + x3y+

y(sin(x) + 1)

M2 = xy+

ex(cos(z) + 1)

M3 = xy+

(sin(x) + 1)(cos(y) + 1)
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Tucker Tensor Decomposition: Example
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Tucker Tensor Decomposition: Example II

I (50× 50× 50) tensor

I 50 columns in x

I 50 rows in y

I 50 time frames

I ‘ones‘ swimming in a sea of ‘zeros‘
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Tucker Tensor Decomposition: Example II

Factorizing all 3 dimensions (50× 50× 50)→ (6× 44× 48)
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Tucker Tensor Decomposition: Example II

6 groups of swimmers (x); 44 lanes occupied (y); 48 time frames (first/last empty)
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NMFk / NTFk Challenges

I Identifying the number of unknown features:
I resolved using custom k-means clustering and sparsity constraints on the core tensor
I number of features identified based on the reconstruction quality (e.g., Frobenius norm) and

cluster Silhouettes
I Solving a non-unique optimization problem:

I addressed through multistarts, regularization and nonnegativity constraints
I applying diverse optimization techniques (Multiplicative/Alternating Least Squares

algorithms, NLopt, Ipopt, Gurobi, MOSEK, GLPK, Clp, Cbc, ...)
I accounting for the physics

I Processing Big Data:
I GPU’s / TPU’s / Distributed computing
I Account for data sparsity and structure
I Nonnegative Tensor Trains

I Dealing with Noisy Data:
I Random noise impacts accuracy but its accountable
I Systematic noise is identified as separate signals
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NMFk / NTFk Performance

4GB Tensor (1000× 1000× 1000)

Framework Execution time (seconds)
MATLAB 2634
NumPy 881
MXNet 644
PyTorch 121
TensorFlow 119
Julia 109
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NMFk / NTFk Scalability

108 109 1010 1011

Tensor Size (bytes)

101

102

103

104

tim
e 

(s
)

3D Tensor
perfect scaling
256 CPUs
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NMFk / NTFk Analyses

I Field Data:
I Characterization of groundwater contaminant sources
I US Climate data
I Geothermal data
I Seismic data

I Lab Data:
I X-ray Spectroscopy
I UV Fluorescence Spectroscopy
I Microbial population analyses

I Operational Data:
I LANSCE: Los Alamos Neutron Accelerator
I Hydrocarbon (oil/gas) production

I Model Data:
I Reactive mixing A+B → C
I Phase separation of co-polymers
I Molecular Dynamics of proteins
I EU Climate modeling (Helmholtz Institute, Germany)
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NMFk / NTFk Publications

I Stanev, Vesselinov, Kusne, Antoszewski, Takeuchi, Alexandrov, Unsupervised Phase
Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with
Custom Clustering, Nature Computational Materials, 2018.

I Vesselinov, Munuduru, Karra, O’Maley, Alexandrov, Unsupervised Machine Learning
Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing, Journal of
Computational Physics, (in review), 2018.

I Vesselinov, O’Malley, Alexandrov, Nonnegative Tensor Factorization for Contaminant
Source Identification, Journal of Contaminant Hydrology, (n review), 2018.

I O’Malley, Vesselinov, Alexandrov, Alexandrov, Nonnegative/binary matrix factorization
with a D-Wave quantum annealer, PLOS ONE, (accepted), 2018.

I Vesselinov, O’Malley, Alexandrov, Contaminant source identification using
semi-supervised machine learning, Journal of Contaminant Hydrology,
10.1016/j.jconhyd.2017.11.002, 2017.

I Alexandrov, Vesselinov, Blind source separation for groundwater level analysis based on
nonnegative matrix factorization, WRR, 10.1002/2013WR015037, 2014.

Unsup ML Studies Mixing Climate EU Climate US Geochem Geysers Quantum Polymer Summary UV LANSCE



Reactive mixing

A B
B

ar
rie

r

A + B → C

I > 2000 simulations of C concentrations in time/space with varying
model inputs representing reactive mixing (5 input model parameters)

I NTFk identifies physics processes impacting C concentrations and
their relationship to model inputs
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Reactive mixing: Flow fields

κfL = 1 κfL = 2 κfL = 3 κfL = 4 κfL = 5

v0 = 1:0

v0 = 10−1

v0 = 10−2

v0 = 10−3

v0 = 10−4
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Reactive mixing: NTFk results

I NTFk extracts the dominant time/space features (processes /
vortices) and compresses the model outputs

I Compression: > 200GB→ ∼ 70MB (ratio ∼ 3000
Here, (1000× 81× 81)→ (3× 12× 13) (time× rows× columns)

Advection Dispersion Diffusion
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Reactive mixing: NTFk results
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Reactive mixing: NTFk results (κfL impacts)
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Climate model of Europe: air temperature

I fluctuations in the air temperature [◦C]
I (424× 412× 365)

(columns× rows× days)
I NTFk extracts spatial and temporal

footprints of dominant features:
I storm signal
I winter seasonal signal
I summer seasonal signal
I ....

I Data compression: ∼ 4GB→ ∼ 0.5MB
Compression ratio: ∼ 8000
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Climate model of Europe: air temperature fluctuations represented by 3 signals
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Climate model of Europe: air temperature fluctuations represented by 3 signals
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Climate model of Europe: water-table depth

I fluctuations in the water-table depth [m]
I (424× 412× 365)

(columns× rows× days)
I NTFk extracts spatial and temporal

footprints of dominant signals
I spring snowmelt signal
I summer rainfall signal
I seasonal signal
I ....
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Climate model of Europe: water-table fluctuations represented by 3 signals
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Climate model of Europe: water-table fluctuations represented by 3 signals
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Climate model of Europe: Water-table fluctuations represented by 2 signals
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Climate model of Europe: Water-table fluctuations represented by 3 signals
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Climate model of Europe: Water-table fluctuations represented by 4 signals
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Climate model of Europe: Water-table fluctuations represented by 5 signals
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Climate model of Europe: Water-table fluctuations represented by 6 signals
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Climate model of Europe: Water-table fluctuations represented by 7 signals
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Climate model of Europe: Water-table fluctuations represented by 8 signals
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Climate model of Europe: Water-table fluctuations represented by 9 signals
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Climate model of Europe: Water-table fluctuations represented by 10 signals
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Climate model of Europe: analyze all model outputs (>40) simultaneously

I Find interconnections among model outputs
I Evaluate impacts of different model setups
I Find dominant processes impacting model predictions

(e.g., climate impacts on groundwater resources, impacts of subsurface processes on
atmospheric conditions)
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US Climate data: precipitation

I NOAA data set of observed monthly
averaged precipitation with spatial
resolution of 6km (1/16◦)

I fluctuations in monthly averaged
precipitation [inches]

I (928× 614× 768)
(columns× rows×months)
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US precipitation: NTFk results

Unsup ML Studies Mixing Climate EU Climate US Geochem Geysers Quantum Polymer Summary UV LANSCE



US precipitation: NTFk results
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US Climate data: temperature

I NOAA data set of observed maximum
monthly temperatures with spatial
resolution of 6km (1/16◦)

I fluctuations in maximum monthly
temperatures [◦C]

I (928× 614× 768)
(columns× rows×months)
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US maximum monthly temperatures: NTFk results
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US maximum monthly temperatures: NTFk results
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ML for extracting contaminant plumes
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ML for extracting contaminant plumes
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ML for extracting contaminant plumes
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Geochemistry: LANL hydrogeochemical dataset

R-44#1

R-28 R-42

(18× 8× 12) tensor (wells× species× years)
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Geochemistry: Nonnegative Tensor Factorization based on Tucker-1 decomposition

I X: data tensor
I W: source (groundwater type) matrix

(unknown)
I G: mixing tensor (unknown)

I M: number of observation points (wells)

I N: number of observation times (e.g,
2001, 2002, ..., 2017)

I K: number of geochemical species
observed (e.g., Cr6+, SO2+

4 , NO−
3 , etc.)

I k: number of unknown groundwater
types mixed at each well

I Constraints:
all tensor/matrix elements ≥ 0
k∑

i=1

Gi,j,t = 1 ∀j, t
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NTFk analysis estimated 7 groundwater types

Sources Cr Cl− ClO4
3H NO3 Ca Mg SO4

(µg/L) (mg/L) (µg/L) (pCi/L) (mg/L) (mg/L) (mg/L) (mg/L)

S1 2970.00 63.00 0.00 0.00 14.00 73.00 25.00 170.00
S5 21.00 51.00 0.00 950.00 2.40 67.00 15.00 50.00
S6 1.50 64.00 0.00 0.00 2.80 51.00 10.00 68.00
S2 0.79 0.35 14.00 0.00 0.50 5.30 1.70 0.60
S4 0.50 0.14 0.00 0.00 10.00 21.00 5.00 10.00
S3 (B) 0.25 3.60 0.00 0.00 0.01 41.00 11.00 0.06
S7 (B) 0.10 0.03 0.00 0.00 0.01 0.40 0.80 0.90
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NTFk estimated concentrations at various wells
R-28 R-42 R-44#1 R-45#1 R-11 R-1 R-50#1
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NTFk estimated time-dependent mixing of 7 groundwater types at various wells

R-28

R-42

R-44#1

R-45#1
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NTFk identified sources (groundwater types) Jan-Dec 2016

Source 7: (background)

Source 1: Cr, Cl
− , NO3, Ca, Mg, and SO4

Source 3: Cl
− , Ca, Mg (background)

Source 2: ClO4

Source 6: Cl
− , Ca, Mg, and SO4

Source 4: NO3

Source 5: 3
H, Cr, Cl

−, Ca, Mg, and SO4
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NTFk analysis of LANL hydrogeochemical datasets

(18× 8× 12) tensor
(wells× species× years)
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Geysers Geothermal Field
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Geysers Geothermal Field Seismic Events

I 470,263 seismic events have been
identified between 2003 and 2016

I spatial and temporal properties converted
to a tensor

I (50× 34× 4818)
(columns× rows× days)

I NTFk extracts spatial and temporal
footprints of dominant features:
I EGS injection starts on November 6th,

2011
I ....
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Seismic Events: NTFk results
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Seismic Events: NTFk results
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Seismic Events: NTFk results
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Seismic Events: NTFk results

Unsup ML Studies Mixing Climate EU Climate US Geochem Geysers Quantum Polymer Summary UV LANSCE



Quantum Machine Learning using D-Wave

I Performed unsupervised feature extraction using
Non-negative Binary Matrix Factorization (NBMF)

I Coupling quantum (D-Wave) and classical computing
I Analyzed the faces from the original NMF paper published in

Nature (Lee & Seung, 1999)
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Polymer-chain folding

I polymer transitions between different
states

I NTFk extracts phase-transition stages
I (201× 64× 64× 3)→ (5× 12× 12× 1)

(state× rows× columns× phases)
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Summary

I Developed novel unsupervised ML methods and
computational tools based on Nonnegative
Factorization (Matrices/Tensors)

I Our ML methods have been used to solve various
real-world problems (brought breakthrough
discoveries related to human cancer research)

I Our ML work already contributes to program
development at LANL in mission-critical areas

I Our goal is to extend the ML methods and tools to
solve big (> terabyte-scale) high-dimensional (> 3)
data

Model data

Sensor data Experimental data

Robust Unsupervised
Machine Learning
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Machine Learning (ML) Algorithms / Codes developed by our team

I NMFk + ShiftNMFk + GreenNMFk

I NTFk

I NBMF: Quantum machine learning using D-Wave

I MADS: Model-Analyses & Decision Support
open-source, version-controlled, high-performance computational framework
http://mads.lanl.gov http://madsjulia.github.io/Mads.jl

I Blind Source Separation examples:
http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation
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Fluorescence Spectroscopy

I 5 cuvettes (samples) with unknown mixtures of 3 unknown
compounds

I Emissions and excitations measured (5× 250× 200 tensor)
I NTFk identifies the mixing ratios of the compounds and their

characteristic spectra
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LANSCE
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LANSCE: Problem

I Numerous independent variables ... knobs controlling the accelerator performance
15 provided / analyzed

I Numerous dependent variables ... observations representing the accelerator
performance
8 provided / analyzed

I 312,326 * 23 = 7,183,498 ≈ 100 MB (per month)
Full monthly dataset ≈ 2 GB; For 30 years ≈ 1 TB;

I Goal #1: ML a reduced-order model to simulate the performance (physics model does
not exist and cannot be built)

I Goal #2: Use ML to control the knobs to optimize the performance

Unsup ML Studies Mixing Climate EU Climate US Geochem Geysers Quantum Polymer Summary UV LANSCE



LANSCE: Independent variables = 15
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LANSCE: Dependent variables = 8
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LANSCE: NMFk estimated signal #1 based on the dependent variables
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LANSCE: NMFk estimated signals #2 based on the dependent variables
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LANSCE: NMFk Estimated signal #3 based on the dependent variables
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LANSCE: NMFk reconstruction of one of the dependent variables
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LANSCE: NMFk estimated signal #3 vs one of the independent variables
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LANSCE: Reduced-order (SVR) Model
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