Nonnegative/Binary Matrix Factorization with a D-Wave Quantum Annealer

Daniel O’Malley (EES-16), Velimir V. Vesselinov (EES-16)
Boian S. Alexandrov (T-1), Ludmil B. Alexandrov (T-6)
Los Alamos National Laboratory

ISTI D-Wave Rapid Response
April, 27 2017
LA-UR-17-23437
Matrix factorization is a fundamental applied math problem

- SVD: $A = U \Sigma V^*$ where Σ is diagonal, U, V are unitary
- QR: $A = QR$ where Q is orthogonal, R is upper triangular
- LU: $A = LU$ where L is lower triangular and R is upper triangular
- Cholesky: $A = LL^*$ where L is lower triangular
- NMF: $A \approx BC$ where $B_{ij} \geq 0$ and $C_{ij} \geq 0$
- D-Wave NMF: $A \approx BC$ where $B_{ij} \geq 0$ and $C_{ij} \in \{0, 1\}$
Low-rank matrix factorizations

\[A \approx B \begin{bmatrix} C \end{bmatrix} \]
Unsupervised ML via matrix factorization

\[A = BC \]

- Each column of \(A \) is a vectorized version of an image of a face
- Each row of \(A \) corresponds to a particular pixel in the images
- Each column of \(B \) is a “feature” that is used to reconstruct the image
- Each row of \(B \) corresponds to a particular pixel in the images
- Each column of \(C \) corresponds to an image and describes how each feature is present in the image
- Each row of \(C \) corresponds to a feature and describes how that feature is present in all the images

Lee & Seung (Nature, 1999)
Unsupervised ML via matrix factorization on the D-Wave

Lee & Seung (Nature, 1999)
Are some of those features solid black? No
How to do it?

- Use “Alternating Least Squares”
 1. Randomly generate a binary C
 2. Solve $B = \arg\min_X \|A - XC\|_F$ classically
 3. Solve $C = \arg\min_X \|A - BX\|_F$ on the D-Wave
 4. Go to 2

- Step 3 is the interesting/D-Wave part
- In our analysis, A is 361×2491, B is 361×35 and C is 35×2491.
- C has $O(10^5)$ binary variables – far too many for the D-Wave, but...
Step 3 in more detail

- $C = \arg \min_X \|A - BX\|_F$ where C and X are 35×2491
- Step 3 is formulated above as a problem in 35×2491 binary variables, but it decomposes ("partitions") into 2491 problems with 35 binary variables each
- $C_i = \arg \min_x \|A_i - Bx\|_2$ where C_i is the i^{th} column of C and x consists of 35 binary variables
- 35 binary variables fit on the D-Wave easily (can go to 49 with the VFYC)
- Imagine a Beowulf cluster of these...
What about performance?
What about performance?

- The D-Wave wins the cumulative time-to-targets modest number of anneals are used (up to 1000), but loses to Gurobi when 10,000 anneals are used
- qbsolv wins most problems, but loses very badly when it loses
- Gurobi takes too long to get rolling on the short time scales, but wins over longer times
Pros/cons: D-Wave NMF versus classical NMF

Forget the D-Wave and just view this as a method

Pros

- The D-Wave NMF’s C matrix is $\sim 85\%$ sparse, but classical NMF’s C matrix is only $\sim 13\%$ sparse
- The components of the D-Wave NMF’s C matrix require fewer bits than classical NMF’s C matrix (1 bit vs. 64 bits)
- Viewed as lossy compression, the D-Wave NMF compresses more densely

Cons

- Classical NMF’s reconstructions have slightly less than half as much error as D-Wave NMF’s reconstructions
- Viewed as lossy compression, the D-Wave NMF loses more information
- The B matrices are about 40% sparse for classical NMF, but dense for D-Wave NMF
Conclusions

- Utilized the D-Wave to solve a practical, unsupervised, machine-learning problem
- The D-Wave outperforms two state-of-the-art classical codes in a cumulative time-to-target benchmark when a low-to-moderate number of samples are used
 - Limitations in getting problems into/out of the D-Wave make these benefits hard to leverage, but the situation should improve with future D-Wave hardware
 - Custom heuristics would likely beat the D-Wave
- Large datasets can be analyzed on the D-Wave with this algorithm
 - We factored a 361×2491 matrix for consistency with Lee & Seung (Nature, 1999), but going larger is not a problem
- The D-Wave only limits the rank of the factorization
 - Not a major limitation, because we want the rank to be small
Preview: PDE-constrained optimization on the D-Wave

- 2D elliptic PDE that can be physically interpreted as representing heat transfer, mass diffusion, flow in porous media, *etc.*
- Use a custom embedding that leverages the virtual full yield chimera solver
- Gurobi can’t keep up: even after 24 hours on 88 cores, Gurobi can’t find a solution that matches the D-Wave’s solution
- EES-16 Brownbag: May 11 @ noon in the EES-16 conference room (Otowi)