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An agent-based approach to global uncertainty and sensitivity

analysis

Dylan R. Harpa,∗, Velimir V. Vesselinova

aEarth and Environment Science Division, Los Alamos National Laboratory, Los Alamos, NM, USA.

Abstract

A novel sampling approach for global uncertainty and sensitivity analyses of modeling results

utilizing concepts from agent-based modeling is presented (Agent-Based Analysis of Global

Uncertainty and Sensitivity (ABAGUS)). A plausible model parameter space is discretized

and sampled by a particle swarm where the particle locations represent unique model pa-

rameter sets. Particle locations are optimized based on a model performance metric using a

standard particle swarm optimization (PSO) algorithm. Locations producing a performance

metric below a specified threshold are collected. In subsequent visits to the location, a modi-

fied value of the performance metric, proportionally increased above the acceptable threshold

(i.e. convexities in the response surface become concavities), is provided to the PSO algo-

rithm. As a result, the methodology promotes a global exploration of a plausible parameter

space, and discourages, but does not prevent, reinvestigation of previously explored regions.

This effectively alters the strategy of the PSO algorithm from optimization to a sampling ap-

proach providing global uncertainty and sensitivity analyses. The viability of the approach

is demonstrated on 2D Griewank and Rosenbrock functions. This also demonstrates the

set-based approach of ABAGUS as opposed to distribution-based approaches. The practical

application of the approach is demonstrated on a 3D synthetic contaminant transport case

study. The evaluation of global parametric uncertainty using ABAGUS is demonstrated
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on model parameters defining the source location and transverse/longitudinal dispersivities.

The evaluation of predictive uncertainties using ABAGUS is demonstrated for contaminant

concentrations at proposed monitoring wells.

Keywords: Agent-based, global uncertainty analysis

1. Introduction1

Inverse approaches are routinely used to identify appropriate values of model parameters2

that provide simulations with the highest degree of consistency with existing observations.3

These approaches can be considered to provide answers to the question “What do the obser-4

vations and model tell us about the parameters?”. An often neglected question is “What do5

the observations and model have the ability to tell us about the parameters?”. An answer to6

the second question is required to properly evaluate the significance and uncertainty of the7

answers to the first question. Approaches that answer the second question explore the effect8

of changes in parameter values on a performance metric and are considered model-based9

uncertainty analysis (UA) approaches.10

UA is often based on sensitivity analysis techniques. Local sensitivity analyses evaluate11

the sensitivities surrounding a solution by calculating derivatives of model simulations with12

respect to model parameters (Vecchia and Cooley, 1987; Cooley, 1993) or adjoint solutions13

of the governing equation (Neuman, 1980; Sykes et al., 1985; Li and Yeh, 1998). Local14

sensitivity analysis approaches are computationally efficient, requiring relatively few model15

calls operating under the assumption that parameter probability distributions are normally16

distributed. These techniques are commonly utilized in gradient-based optimization strate-17

gies for parameter estimation. The information provided by these techniques in a UA is18

limited to a region surrounding the current parameter values, to models with a continuous19

parameter space, and by the assumption of normally distributed parameter uncertainty.20

Null-Space Monte-Carlo (NSMC) combines concepts from error variance analysis theory21
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and Monte Carlo (MC) sampling to perform UA on highly parameterized models (Tonkin and22

Doherty, 2009). The null-space is defined from local sensitivities of a calibrated model. For23

a given set of best model parameter estimates, the null-space is a subspace of the parameter24

space comprised of parameter combinations that have negligible impact on the performance25

metric. An MC sampling is utilized to produce parameter realizations by modifying param-26

eter values within the calibration null-space. If, in the process of MC sampling, a parameter27

realization produces an uncalibrated model, parameters in the calibration solution space are28

re-estimated to re-calibrate the model. This produces a local UA capable of reducing the29

computational burden imposed by a large numbers of parameters.30

Most global sensitivity analysis approaches are based on evaluating the relative contribu-31

tion of individual and combinations of parameters to the variance of a performance metric32

(Sobol, 2001; van Werkhoven et al., 2008; Wagener et al., 2009). These approaches provide33

scalar indices of global sensitivity. This information indicates parameters of interest and cor-34

related parameter estimates. The information from such analyses does not provide specific35

information about sensitivities at any specific point in the parameter space.36

Evaluation of the global uncertainty of a model is typically based on global sampling37

approaches. Vrugt et al. (2008) introduced a Markov chain Monte Carlo (MCMC) approach38

entitled DiffeRential Evolution Adaptive Metropolis (DREAM). This approach provides es-39

timates of posterior density functions of parameters in a formal Bayesian framework. An40

informal Bayesian approach to global UA is the Generalized Likelihood Uncertainty Analysis41

(GLUE) developed by Beven and Binley (1992). This approach performs an MC analysis42

using a statistically informal likelihood function to rank model performance. Recently, Harp43

and Vesselinov (2011) developed a sampling approach for global UA of stochastic models44

of flow medium heterogeneity introducing the concept of an acceptance probability of a45

stochastic parameter set. Sampling approaches have the ability to provide detailed informa-46

tion directly addressing the UA. The drawback to such approaches is that the number of47
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model calls is often too large for many practical applications involving process-based models48

(Keating et al., 2010).49

The approach presented here intends to provide an alternative to existing UA approaches50

that will be useful for complex problems for which a local UA is known to be incomplete51

and for which the model runs are too computationally intensive for a rigorous sampling-52

based inference approach. We will refer to this approach as Agent-Based Analysis of Global53

Uncertainty and Sensitivity (ABAGUS). Concepts from agent-based modeling have been54

utilized extensively in optimization algorithms, such as particle swarm optimization (PSO)55

(Kennedy and Eberhart, 1995; Clerc, 2006) and ant colony optimization (Dorigo and Stützle,56

2004). However, to our knowledge, their direct application to global UA has not been57

explored. The ABAGUS computational framework is based on integrating concepts of agent-58

based social simulation with the Standard PSO 2006 (SPSO2006) algorithm (Paricle Swarm59

Central, 2006), effectively altering the strategy of SPSO2006 from optimization to global UA.60

SPSO2006 is chosen here as it implements a parsimonious and efficient version of particle61

swarm optimization that is well-known and freely available for download.62

The strategy of ABAGUS is to efficiently explore a discretized parameter space by storing63

information about locations producing simulations consistent with observations. ABAGUS64

does not require statistical convergence and the computational expense of the approach can65

be reduced for initial explorations by coarsening the discretization. The algorithm alters the66

response surface at the previously sampled locations by increasing the associated performance67

metric (e.g. objective function, fitness function). As a result, if points within a local area of68

attraction were already visited by the algorithm, the region appears as a region of concavity69

(repulsion), as opposed to a region of convexity (attraction), discouraging future exploration.70

Similarities can easily be drawn between ABAGUS and the Sugarscape agent-based social71

simulator (Epstein and Axtell, 1996), designed to model the survival of a population on a72

regenerative resource; however, in ABAGUS, the resource is not regenerative, encouraging73
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global exploration of the parameter space.74

The ABAGUS approach differs from many existing sampling-based UA approaches, as it75

is a set-based approach where all locations below a certain level of consistency with observa-76

tions are collected without performance-based preference. Therefore, outlying solutions that77

are marginally acceptable are represented with equal weight to solutions within clustered78

locations. In a statistical inference scheme, these marginally acceptable, outlying solutions79

can be underrepresented in the results as the frequency of sampling these isolated locations80

can be low. These outlying locations can be particularly revealing in the case of long- and81

heavy-tailed probabilistic distributions (such as non-normal stable distributions), where the82

collective probability of a large number of extremely low-probability events is not negligible83

and cannot be characterized by the second moment of the Gaussian distribution. In other84

words, in cases where the probability of an extreme event is not negligible, but where the85

magnitude of the extreme event is uncertain. The set-based approach of ABAGUS provides86

results in a form that can be utilized by set-based analyses, such as info-gap theory (Ben-87

Haim, 2006) or within a GLUE framework using a “limits of acceptability” approach (Liu88

et al., 2009).89

The ABAGUS approach is warranted in cases where normal (Gaussian) probabilistic90

distributions are deemed inappropriate to describe the statistical distribution of a property91

(e.g. fractal properties) as the statistical moments are ill-defined (stable probabilistic distri-92

butions with α < 2 have divergent second moments and with α < 1 divergent first moments;93

a Gaussian distribution is a special stable distribution with α = 2 (Zolotarev, 1986)). Such94

situations are more ubiquitous than often acknowledged, particularly when modeling com-95

plicated systems in environmental investigations (Nolte et al., 1989; Neuman, 1990; Dimri,96

2000). Therefore, ABAGUS provides an alternative UA approach in cases where a formal97

rigorous statistical inference scheme is inappropriate due to ill-defined statistical moments.98

The application of an ABAGUS type approach in cases where statistical inference is deemed99
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appropriate is ill-advised and would provide an inferior level of detail.100

Since the ABAGUS algorithm is based on SPSO2006, a brief discussion of this algorithm101

is presented in section 2. The ABAGUS algorithm is discussed in section 3. Section 4102

demonstrates the performance of ABAGUS on 2D Griewank and Rosenbrock functions.103

Section 5 presents a synthetic five parameter contaminant transport problem that is utilized104

to demonstrate the use of ABAGUS on a practical application.105

2. Standard PSO 2006 algorithm106

SPSO2006 modifies a population of solutions called particles defined by their position and107

velocity in a D-dimensional parameter space. The position and velocity of the ith particle108

can be represented as �Pi = [pi,1, pi,2, . . . , pi,D] and �Vi = [vi,1, vi,2 . . . , vi,D], respectively. An109

empirical formula for determining the swarm size S has been suggested as S = 10 +
√

D110

(Paricle Swarm Central, 2006). Particles retain a record of the best location they have visited111

so far denoted as �Bi = [bi,1, bi,2, . . . , bi,D]. Particles are also informed of the best location112

that K other randomly chosen particles have visited, denoted as �Gi = [gi,1, gi,2, . . . , gi,D]. A113

standard value for K is 3 (Paricle Swarm Central, 2006). These networks of informers are114

reinitialized after iterations with no improvement in the global best location of the swarm.115

The velocity of the ith particle in the jth dimension is updated from swarm iteration step k116

to k + 1 as117

vi,j(k + 1) = wvi,j(k) + c1r1(bi,j − pi,j(k)) +

c2r2(gi,j − pi,j(k)), k = {1, . . . , D}, (1)

where w is a constant referred to as the inertia weight, c1 and c2 are constants referred to118

as acceleration coefficients, r1 and r2 are independent uniform random numbers in [0, 1].119
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Figure 1: ABAGUS flow diagram. N is a counter of the current number of function evaluations (model
runs), Nt is the total number of allowable function evaluations, S is the number of particles, E is the swarm
energy, E0 is the initial swarm energy, w is the inertia weight, c1 and c2 are acceleration coefficients, ρ is the
exploration rate metric, �Pi is the current location of the ith particle, ε is the performance metric threshold,
Φi is the current performance metric for the ith particle, and Φinv(�Pi) is the inverted performance metric
associated with location �Pi.

The swarm iteration steps are also referred to as time steps because they represent the120

progress of swarm development in the parameter space. The parameter w controls the level121

of influence of the particles previous displacement on its current displacement, c1 and c2 scale122

the random influence of the particles memory and its network of informers, respectively.123

Values of w = 0.72 and c1 = c2 = 1.2 have been demonstrated to perform well an many124

problems (Clerc, 2006). A limitation on the magnitude of the velocity Vmax is commonly125

employed. The particle position at each iteration is updated as126

pi,j(k + 1) = pi,j(k) + vi,j(k + 1), k = {1, . . . , D}. (2)

Additional details on SPSO2006 are available in Clerc (2006) and Cooren et al. (2009).127

The source code is available for download at Paricle Swarm Central (2006).128

3. ABAGUS algorithm129

Concepts from agent-based modeling have found significant utility in global optimization.130

The following discusses the first, to our knowledge, utilization of agent-based modeling to131

perform global UA. A flow diagram of the ABAGUS algorithm is provided in Figure 1 and132

discussed below.133

As ABAGUS has been developed by modifying SPSO2006, its search algorithm is nearly134

identical to SPSO2006’s; except that the parameter space discretization is enforced on the135

particle movements. This is accomplished by moving proposed particle locations (defined136
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by equations (1) and (2)) to the nearest node of the discretization. The parameter space137

discretization is based on user-provided parameter-specific resolution (each parameter can138

be assigned a distinct resolution). The resolution of the analysis can therefore be controlled139

by the user depending on computational constraints and/or desired level of detail. ABAGUS140

runs can also be nested, using the samples from previous coarser runs as starting points for141

finer resolution runs. The discretization of the parameter space does not hinder the UA142

as the strategy is to identify regions of the parameter space producing indistinguishably143

consistent simulations with observations, and is not an optimization strategy intended to144

identify a single optimal solution.145

ABAGUS collects parameter sets (locations within the discretized space) with a perfor-146

mance metric Φ below a defined threshold ε, and inverts the value of the performance metric147

as148

Φinv = 2ε− Φ, Φ < ε, (3)

where Φinv is the value of the inverted performance metric. Φinv is provided to particles on149

subsequent visits to the location without recomputing the model run. The value of ε can be150

defined based on theoretical (e.g. confidence levels under certain assumptions (Vecchia and151

Cooley, 1987; Cooley, 1993)) or problem-specific considerations (e.g. “limits of acceptability”152

(Liu et al., 2009)). The potentially large number of locations that must be collected are153

managed by a KD-tree, allowing the collected locations to be efficiently searched in a binary154

fashion in a K-dimensional space, where K can be any positive integer (Tsiombikas, 2009).155

The value of Φinv associated with the acceptable location is stored to provide to particles on156

future visits. In the case of ABAGUS, K equals the dimension of the parameter space (D). A157

nearest neighbor search of the KD-tree is utilized to identify if a location has been collected158

previously (Tsiombikas, 2009). If the location has been collected, Φinv is provided; if not, a159
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forward model run is executed to compute Φ for the location. The details of this process are160

illustrated in Figure 1. As a result, revisiting collected locations has a relatively insignificant161

cost to the algorithm, particularly in cases involving long model execution times.162

Equation 3 effectively adds the discrepancy between ε and Φ to ε and assigns this value as163

the value of the performance metric associated with the location. The larger the discrepancy,164

the less attractive the position appears to future visits. As a result, convexities in the165

response surface become concavities.166

As the ABAGUS algorithm progressively identifies and collects acceptable locations in167

the parameter space, the coefficients w, c1, and c2 are dynamically modified to maintain an168

appropriate balance between exploration and intensification. An exploration rate metric ρ169

quantifies the level of exploration at each iteration of the ABAGUS run as170

ρ = Ne/Nr (4)

where Ne is the number of new locations visited this iteration and Nr is the number of revisits171

to previously collected positions this iteration (therefore, Ne + Nr = S at each iteration).172

One iteration of ABAGUS involves updating and evaluating the population of solutions173

(particles). The following rules are used to maintain a reasonable value for ρ:174

if ρ < ρ0 : w = w(1 + a),

c1 = c1(1 + a),

c2 = c2(1 + a).

if ρ > ρ0 : w = w(1− d),

c1 = c1(1− d),

c2 = c2(1− d).
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where ρ0 is set by the user to a value deemed to be reasonable and a and d are constants175

greater than zero. In the cases investigated here, values of ρ0 = 1 and a = d = 10−5 were176

found to be effective. More complex strategies for controlling ρ by modifying w, c1 and c2 are177

easily conceptualized, and will take time and effort to evaluate on varied response surfaces.178

ABAGUS is allowed to run to a maximum number of model evaluations (Nt) or until179

the swarm runs out of energy (E). The initial energy of the swarm (E0) is specified by180

the user, where larger values of initial energy will allow more exploration of the parameter181

space. Each particle move decrements the swarm energy by one. Each identification of an182

acceptable location increments the swarm’s energy. Incrementing the swarm energy by 10%183

of the initial energy is used for the cases investigated here (E = E + E0 ∗ 0.1). For an initial184

investigation of the parameter space, an initial energy of 10,000 is reasonable for the test185

cases presented here. These steps are illustrated in Figure 1.186

4. Test functions187

The performance of ABAGUS is demonstrated on 2D Griewank and Rosenbrock test188

functions, defined as189

z =
x2 + y2

4000
− cos

(
x√
2

)
cos

(
y√
3

)
+ 1 (5)

and190

z = (1− x)2 + 100(y − x2)2, (6)

respectively. The Griewank and Rosenbrock functions are benchmark problems presenting191

challenging response surfaces for optimization strategies. The Griewank function contains192

numerous local minima with a single global minimum of zero at (0,0). The Rosenbrock193

function contains a large smooth valley with a banana-shaped area of attraction surrounding194
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an ill-defined global minimum of zero at (1,1).195

Parameter bounds for x and y are both [−100, 100] and the parameter space is discretized196

to a 0.1 resolution for both functions, resulting in 4× 106 possible locations. The value of ε197

is set to 0.1 for the Griewank run and 20 for the Rosenbrock run. The initial swarm energy198

is set to 10,000 and the number of function evaluations is limited to 2×106. Initial values199

for w, c1 and c2 are set according to the constant values commonly utilized by SPSO2006200

Paricle Swarm Central (2006) (w=0.72; c = c1 = c2=1.2, where c1 and c2 will be referred to201

collectively as c hereafter). In order to evaluate the performance of the ABAGUS algorithm,202

one particle is initialized to the global minimum ((0,0) for the Griewank function, (1,1)203

for the Rosenbrock function). This eliminates the initial search from random locations204

prior to the identification of an area of attraction, which, for the ABAGUS algorithm, is205

identical to SPSO2006 Paricle Swarm Central (2006). The utilization of ABAGUS in this206

manner (i.e. beginning the ABAGUS run from a known optimal location obtained by a prior207

optimization) evaluates the capability of the algorithm to perform UA; the identification of208

the global minimum can be a separate task.209

Figures 2 (a) and (b) present maps of the response surfaces for the parameter space210

considered in the ABAGUS runs for the Griewank and Rosenbrock functions, respectively.211

Figures 2 (c) and (d) present 3D plots of the structure of the response surfaces near the212

global minimum for each case. The results of the ABAGUS runs are presented in Figures 2213

(e) and (f) as maps of the response surfaces at identified locations. It is apparent that for214

both test functions, ABAGUS is able to identify the local and global areas of attraction215

containing acceptable solution. The set-based nature of the approach, and its lack of a need216

for distributional assumptions, is evident in these results, as opposed to many UA approaches217

(e.g. Bayesian approaches). This fundamental difference in approach between ABAGUS and218

distribution-based approaches makes direct comparison difficult, and is not attempted here.219

It should be apparent, however, the difficulty that approaches that require assumptions of220
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Figure 2: Griewank and Rosenbrock test function analyses. Maps of the response surface for the full
parameter space considered in the search [-100,100] are presented in (a) and (b). Subplots (c) and (d)
present 3D surfaces of the objective function near the region of the parameter space with values below
the cutoff. Subplots (e) and (f) present the results of the ABAGUS runs identifying the solutions below
predefined cutoffs equal to 0.1 and 20, respectively. A global minimum of 0 exists at (0,0) for the Griewank
function and (1,1) for the Rosenbrock function.

Figure 3: “True” contaminant concentration map at 49 years. Circles represent monitoring well locations.
A dashed line rectangle indicates the parameter bounds for xs and ys. The “true” contaminant source is
indicated.

probabilistic distributions of parameter uncertainty will have with response surfaces similar221

to these response surfaces, particularly for the Griewank function.222

The Griewank run collected 1552 locations with Φ < ε = 0.1 from approximately223

2.00×106 function evaluations with approximately 2.08×106 revisits to collected locations.224

The Rosenbrock run collected 324 locations with Φ < ε = 20 from 109,060 function evalu-225

ations with approximately 2.25×105 revisits. The Griewank run took 15 seconds with ap-226

proximately 1.3×105 function evaluations per second and the Rosenbrock run took 1 second227

with approximately 1.1×105 function evaluations per second on a 2.8GHz processor.228

5. Contaminant transport case study229

The ABAGUS approach is demonstrated on a synthetic contaminant transport problem230

to explore the model-based uncertainty of distributed contaminant concentrations in an231

analytical contaminant transport model (Vesselinov and Harp, 2010) considering uncertainty232

in the plume source location (xs, ys) and dispersivities (ax, ay, az). Flow is in the x-direction.233

True concentrations are collected from a simulation of the model given true parameter values234

listed in Table 5. Information regarding the parameters (e.g. value, min, max, and resolution)235

is also presented in Table 5. The collected concentrations have been rounded to values similar236
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in resolution to field-collected measurements. A concentration map of the “truth” at t = 49237

years is presented in Figure 3.238

The performance metric for the contaminant transport case study is a sum-of-the-squared-239

residuals (SSR) expressed as240

Φ(θ) =
N∑

i=1

(ĉi(θ)− ci)
2, (7)

where Φ is the performance metric, θ is a vector containing the parameter values, ĉ(θ) is241

a vector of simulated concentrations resulting from θ, c is a vector containing the observed242

concentrations, and N is the number of observations. Due to the rounding of the collected243

concentrations, a value of Φ=0.14 is obtained from the true parameter values.244

It is assumed that we are interested in collecting parameter sets producing values of Φ245

below 100 (ε = 100, refer to equation 3). Below the cutoff values, the discrepancies between246

the model predicted and observed concentrations are assumed to be due to measurement247

errors and other factors not captured by the applied model. As a result all the realizations248

below the cutoff value are assumed to be equally consistent. The true parameters are pro-249

vided to define the location of one of the initial particles in the swarm, similar to providing250

the optimal location from a previous optimization run. The initial energy is set to 10,000251

and the maximum number of model calls is 200,000. As in the test functions, values for w252

and c are set according to values commonly utilized by SPSO2006 Paricle Swarm Central253

(2006) (w=0.72; c=1.2).254

Figure 4 presents histograms of the parameter values obtained by the ABAGUS run. This255

information differs from posterior distributions of a Bayesian analysis in that the histograms256

are not weighted by the performance metric (i.e. likelihood function). It is also possible to257

rank the acceptable parameter sets by some model-performance or statistical-interference258

metric. Each collected discrete parameter set is represented equally within the histogram259
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Well x [m] y [m] ztop [m] zbot [m] t [a] c [ppb]
w01 1296 2154 5.57 12.55 49 0.1
w02 1906 1679 36.73 55.14 49 1
w03 212 1150 0 15.04 49 0

w04 1170 1735 13.15 20.41
44 354
49 392

w05 3062 1274 26.73 33.71 49 0
w06 1906 2494 69.01 83.98 49 0
w07 1879 2484 11.15 18.19 49 0
w08 2563 2320 4.86 11.87 49 0
w09 769 1650 3.66 10.09 49 2140

w10 516 1799
3.32 9.63 49 5
23.2 26.24 49 2

w11 1644 1568
4.94 7.99 49 48
32.46 35.48 16 0

w12 1554 1837
3.59 6.64 49 42
32.51 38.61 12 0

w13 1278 1349
3 6 50 18
36 42 50 4

d01 496 1579 3 6 – –
d02 986 1440 3 6 – –
d03 1236 1945 3 6 – –
d04 1858 1394 3 6 – –

Table 1: Well coordinates, screen top (ztop) and bottom (zbot) depths below the water table, and year and
value of observed contaminant concentrations. Year and concentration are omitted for proposal wells (‘d’
wells).

xs[m] ys[m]
ax[m] ay[m] az[m]

(log10 ax) (log10 ay) (log10 az)

value 810 1657
70 20 0.6

(1.845) (1.301) (-0.222)

min 400 1000
30 5 0.1

(1.477) (0.699) (-1.0)

max 1200 2000
200 30 5

(2.301) (1.477) (0.699)

resolution 0.5 0.5
1.0 0.16 0.029

(0.005) (0.005) (0.01)

Table 2: Parameter values and resolution for the contaminant transport case study. Log-transformed dis-
persivities are presented in parenthesis as these are the values provided to ABAGUS for the case study.
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Figure 4: Histograms of parameter values obtained from ABAGUS evaluation. “True” values are indicated
by bold vertical lines.

Figure 5: Map of log-transformed minimum performance metric (log10 Φ) values at identified source locations,
xs and ys. The location of the “true” source is indicated.

(i.e. assumed to be equally consistent). The histograms present a frequency analysis only260

within the context of the samples collected by ABAGUS, which are discrete in nature. The261

histograms are intended to summarize the results of the ABAGUS run, but should not be262

considered as a formal statistical frequency analysis. Within set-based analyses (Ben-Haim,263

2006) this representation of parameter uncertainty is appropriate. It is apparent that the264

histograms include the “true” values for all parameters (Table 5).265

Figure 5 presents a map of the lowest Φ value collected at each source location (xs, ys).266

Multiple Φ values are possible at each source location due to combinations of ax, ay, and az.267

While the histograms in Figure 4 are not centered on the true parameter values, Figure 5268

demonstrates that the lowest Φ values are centered around the true location. This is not269

apparent in the histograms of Figure 4, where all collected parameter sets are represented270

as equally consistent with observations.271

Figure 6 presents histograms of log-transformed predicted concentrations at the proposal272

well locations (d01, d02, d03, d04) associated with the histograms of collected parameter273

values in Figure 4. This constitutes a model-based predictive uncertainty analysis. The his-274

tograms indicate varying degrees of predictive uncertainty, with concentrations varying over275

9 orders of magnitude for d03, and around 5 orders of magnitude for d02 and d03. The pre-276

dictive uncertainties are non-parametric, allowing for an empirical evaluation unconstrained277

by any pre-specified probabilistic distribution.278

The ABAGUS run collected 3,590 parameter sets producing Φ < ε = 100 from 1 × 105
279
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Figure 6: Histograms of predicted concentrations at proposed monitoring well sites at t=51 a. Refer to
figure 3 for proposal locations.

model evaluations. The total number of plausible locations in the discretized parameter280

space is 4×1015. The ABAGUS run took approximately 23 minutes on a 2.8GHz processor,281

with approximately 117 model evaluations per second. The resolution of xs and ys are 10282

cm. This level of detail is not likely significant in a practical application, but is used here283

for demonstration purposes. A coarser level of detail in xs and ys would require fewer model284

calls.285

Inspection of the results summarized by Figure 4 provide information answering the286

question discussed in the introduction: “What do the observations and model have the ability287

to tell us about the parameters?” The summary provided by the histograms in Figure 4288

indicate the frequency of discrete parameter values producing equally consistent simulations289

to the observations considering a value of ε = 100, indicating model parameter uncertainty290

and sensitivity. The histograms in Figure 6 provide information about uncertainty and291

sensitivity related to model predictions.292

6. Conclusions293

The utilization of concepts from agent-based modeling coupled with the efficiency of294

KD-tree data storage provide a novel approach to perform a global UA. The efficiency of295

the approach can be tailored to the computational constraints of a problem by specifying296

the resolution of the search. ABAGUS does not produce formal posterior distributions of297

parameter probabilities consistent with Bayes’ rule, instead focusing on identifying regions298

of the parameter space producing simulations acceptably consistent with observations. The299

performance of ABAGUS is evaluated on two test functions with known response surfaces,300

demonstrating the viability of the approach. The use of ABAGUS on a practical application301
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is evaluated on a 5-parameter synthetic contaminant transport case study, demonstrating302

the approaches ability to identify regions of the response surface producing simulations ac-303

ceptably consistent with observations surrounding the “true” parameter values. ABAGUS304

provides a discretized global UA approach filling the gap between local UA approaches and305

rigorous sampling-based global UA approaches. ABAGUS will be an attractive alternative306

for complex problems where it is recognized that a local UA is inappropriate, but for which307

a rigorous sampling-based global UA is infeasible due to computational constraints. The308

ABAGUS algorithm is included in the MADS toolbox (Vesselinov and Harp, 2010).309
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� A PSO algorithm is modified to perform global uncertainty and sensitivity analyses.  
 

� A global search is promoted by modifying the shape of the response surface. 
 

� The approach is validated on the Griewank and Rosenbrock test functions.  
 

� A application of the approach is demonstrated on a contaminant transport problem. 
 




